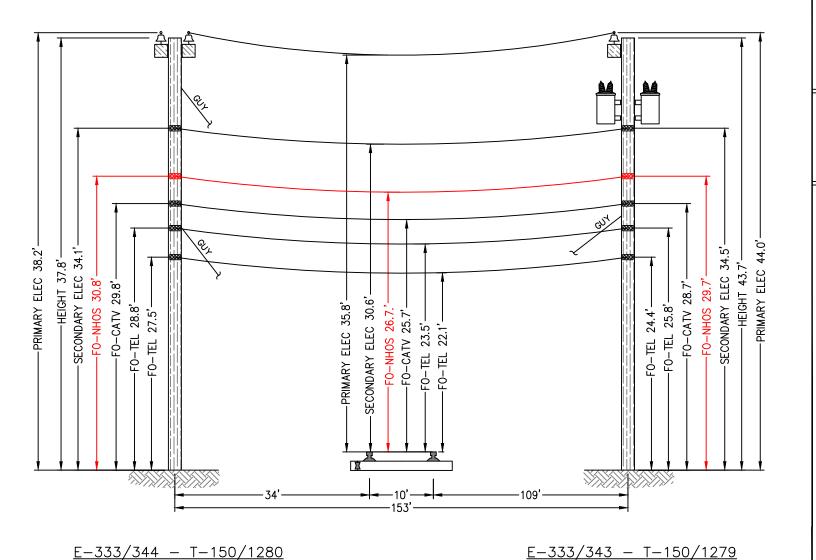


Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide


Waveguide River and Rail Crossings

Selected Cables	X-SECT AREA (sq.in)	EFF MODULUS (psi)	NOMINAL DIAM (in)	EFF.EXP. COEFF. (1/F)	CABLE WEIGHT (lb/ft)	E*A LOAD BEARING CAPACITY (lbs)	MAX. RATED LOAD (lbs)
1/4"6.6mEHS ORF-O-288-LN Bundle	0.0352 0.5782	(I/	0.250	5.60E-06 1.13E-05	0.1210 0.1960 0.3170	914940 155982	6650 651

NESC RESULTS

Loading Condition	Temp.	Ice Load lb/ft	Ice Thick in	Wind Constant lb/ft	Wind Load lb/sq ft	Load + Const lb/ft	Sag ft	Tension	% Len Chg From Input Conditions	Sag @ Point 76.5 ft	Sag Comp	Sag Comp	Vector Angle Dea
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	3.07	1704	0.08	3.08		2.71	28.1
232A1	120.0	0.000	.00	.0	0.0	0.317	1.91	486	0.01	1.91	0.00	1.91	0.0

0	Temp	Midspan	Tension		Clearance
Span Length = 153.00 ft	(F)	Sag (ft)	(lb)	Change	
Span Sag = 1.53 ft (18.4 in)					
Span Tension = 606 lb	-40.0	.92	1,012	-0.02	N/A
Max Load = 6,650 lb	-30.0	.96	969	-0.02	N/A
Usable load (60%) = 3,990 lb	-20.0	1.00	926	-0.02	N/A
Catenary Length = 153.041 ft	-10.0	1.05	885	-0.01	N/A
Stress Free Length @	.0	1.10	845	-0.01	N/A
Installed Temperature = 152.939 ft	10.0	1.15	806	-0.01	N/A
	20.0	1.20	769	-0.01	N/A
Unloaded Strand	30.0	1.26	733	-0.01	N/A
Sag = .82 ft (9.8 in) 0.54 %	40.0	1.33	699	-0.01	N/A
Tension = 432 lb	50.0	1.39	666	0.00	N/A
	60.0	1.46	635	0.00	N/A
	70.0	1.53	606	0.00	N/A
	80.0	1.60	578	0.00	N/A
	90.0	1.68	553	0.01	N/A
	100.0	1.75	529	0.01	N/A
	110.0	1.83	506	0.01	N/A
	120.0	1.91	486	0.01	N/A
	130.0	1.99	467	0.02	N/A
	140.0	2.07	449	0.02	N/A

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the railroad. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole owners.

(Existing joint owned utility

pole (PSNH/Fairpoint) in

existing Right-of-Way)

E-333/343 - T-150/1279

Notes:

New Hampshire Optical Systems, Inc.

Proposed

Railroad Crossing Conway, NH

The heights of structures shown hereon are based on field measurements taken with a

Nikon 362 total station during a site survey on

Vertical distances are representative of attachment heights after utility make ready

moves are completed.

99 Pine Hill Rd.

Nashua, NH 03063 (603-821-6467)

Project # TID-170 - Primary 8 Drawing # AC-CONW-RR-3

Date: 12/06 Revision #

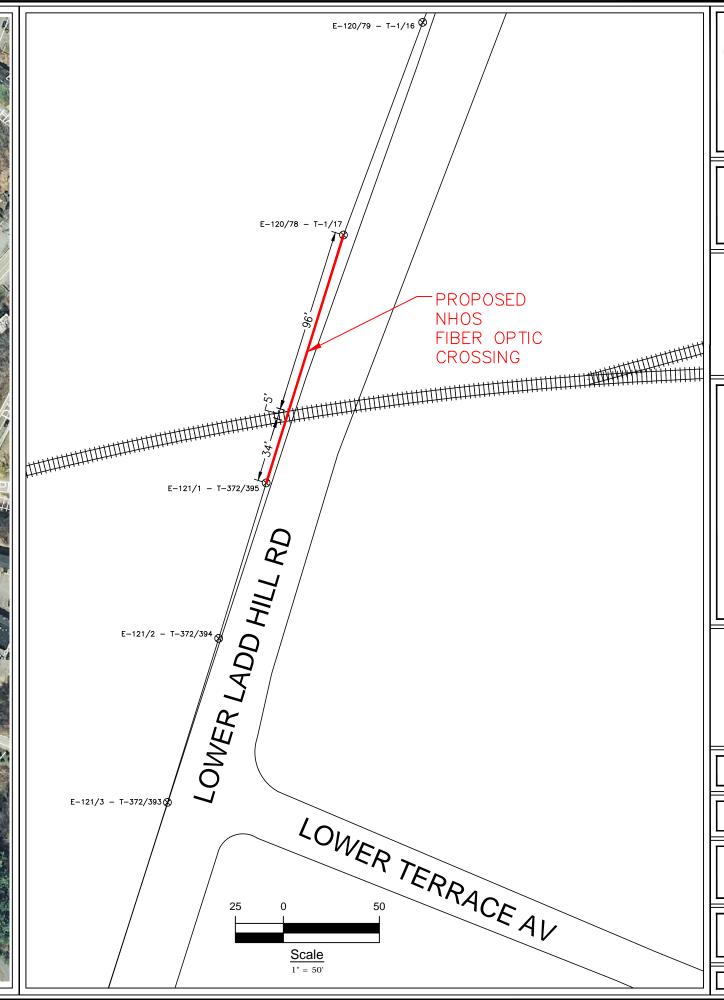
> Proposed Railroad Crossing Conway, NH

Location:
West Main St., Conway, NH
Nearest cross street- Haven Ln.

Sheet 2 of 2

43 - 1-130/12/3

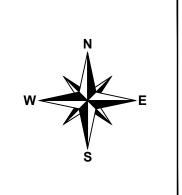
 $K: \Projects\USNH\dwgs\Conway\rail_xing\TID-170\TID-170.dwg$


(Existing joint owned utility

pole (PSNH/Fairpoint) in

existing Right-of-Way)

E-333/344 - T-150/1280



New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed Railroad Crossing Meredith, NH

Project # TID-178 - Primary 8 Drawing # AC-MER-RR-1

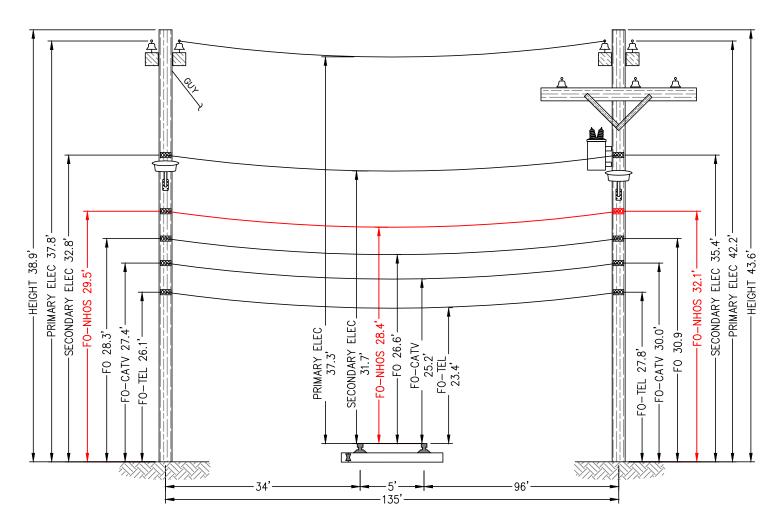
Date: 12/12/11 Revision #

> Proposed Railroad Crossing Meredith, NH

<u>Location:</u>
S. Main St., Meredith, NH
Nearest cross street- Railroad Ave

Sheet 1 of

Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide


Waveguide River and Rail Crossings

						E*A LOAD	MAX.
	X-SECT	EFF	NOMINAL	EFF.EXP.	CABLE	BEARING	RATED
	AREA	MODULUS	DIAM	COEFF.	WEIGHT	CAPACITY	LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Bundle			1.108		0.3170		

NESC RESULTS

					Horz	Result			% Len	Sag @	Horz	Vert	
Loading		lce	Ice	Wind	Wind	Load	Sag	Tension	Chg From	Point	Sag	Sag	Vector
Condition	Temp.	Load	Thick	Constant	Load	+ Const			Input	67.5	Comp	Comp	Angle
	(F)	lb/ft	in	lb/ft	lb/sq ft	lb/ft	ft	lb	Conditions	ft	ft	ft	Deg
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	2.61	1561	0.07	2.62	1.23	2.30	28.1
232A1	120.0	0.000	.00	.0	0.0	0.317	1.70	424	0.02	1.70	0.00	1.70	0.0

2027(1	120.0 0.000	.00	.0	0.0	0.017	1.70	727	0.02	1.70 0.0	0.0
					Ter	np	Midspar	n Tension	% Length	Clearance
Span Length	n = 135.00 ft				(F)	Sag (ft)	(lb)	Change	
Span Sag =	1.35 ft (16.2 in)								
Span Tensio	n = 535 lb				-40	0.0	.77	933	-0.02	N/A
Max Lo	oad = 6,650 lb				-30	0.0	.81	890	-0.02	N/A
Usal	ble load (60%) :	= 3,990	lb		-20	0.0	.85	848	-0.02	N/A
Catenary Le	ngth = 135.036	ft			-10	0.0	.89	807	-0.01	N/A
Stress Free	Length @				.()	.94	767	-0.01	N/A
Installed	Temperature =	134.95	7 ft		10	.0	.99	729	-0.01	N/A
					20	.0	1.04	692	-0.01	N/A
Unloaded St					30	.0	1.10	657	-0.01	N/A
		56 %			40	.0	1.16	623	-0.01	N/A
Tension =	= 367 lb				50	.0	1.22	592	0.00	N/A
					60	.0	1.28	562	0.00	N/A
					70	.0	1.35	535	0.00	N/A
					80	.0	1.42	509	0.00	N/A
					90	.0	1.49	485	0.01	N/A
					100	0.0	1.56	463	0.01	N/A
					110	0.0	1.63	442	0.01	N/A
					120	0.0	1.70	424	0.02	N/A
					130	0.0	1.78	406	0.02	N/A
					140	0.0	1.85	390	0.02	N/A

E-121/1 - T-372/395 (Existing joint owned utility pole (NHEC/Fairpoint) in existing Right-of-Way)

E-120/78 - T-1/17(Existing joint owned utility pole (NHEC/Fairpoint) in existing Right-of-Way)

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed Railroad Crossing Meredith, NH

Notes:

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on
- Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-178 - Primary 8

Proposed Railroad Crossing Meredith, NH

Location:
S. Main St., Meredith, NH Nearest cross street- Railroad Ave

Sheet 2 of 2

E-121/1 - T-372/395

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

E-120/78 - T-1/17